Netzwerke, Kapitel 3.3

Kontrollfragen 1

1. Was ist die Aufgabe der Transportschicht?

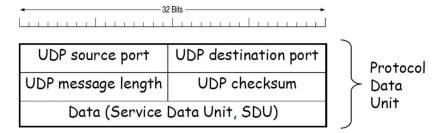
End-zu-End Verbindung

- Verlorene, gestörte Pakete erkennen und durch Wiederholung der Übertragung korrigieren. (Ähnlich wie die Sicherungsschicht.)
- Die Mängel der Vermittlungsschicht werden "verborgen".
- Einheitliche Dienste-Schnittstelle für übergeordnete Schicht, unabhängig von der verwendeten Vermittlungsschicht.

2. Nennen Sie einige typische Dienstprimitive der Transportschicht.

Primitive	Packet sent	Meaning
LISTEN	(none)	Block until some process tries to connect
CONNECT	CONNECT REQ.	Actively attempt to establish a connection
SEND	DATA	Send information
RECEIVE	(none)	Block until a DATA packet arrives
DISCONNECT	DISCONNECTION REQ.	This side wants to release the connection

- 3. Muss sich ein End-zu-End-Protokoll um das Routing durch das Internet kümmern?
- 4. Welche Probleme werden in der Transportschicht gelöst? *Mögliche Probleme*
 - Verlorene (oder gestörte) Pakete
 - Pakete kommen verspätet an
 - Die Verzögerungszeiten sind variabel, sie hängen von der Netzlast ab
 - Pakete können doppelt ankommen (Duplikate)
 - Datenstau, Anhäufung von empfangenen Paketen
 - Neubooten von Rechnern und Wiederaufnahme einer laufenden Übertragung


Lösungsansätze

- Durchnummerieren aller Pakete mit Folgenummern (Im Beispiel: x, y, z)
- Anforderungen und Bestätigungen
- Beschränkung der Lebensdauer von Paketen (Zeitstempel), Überwachung mit Timer
- Verbindungsaufbau mit 3-Wege-Handshake
- 5. Welche Art Handshake wird dabei benutzt?
 - 1. Connection Request (Anforderung) mit Folgenummer x
 - 2. Acknowledge (Bestätigung) mit Bestätigung x und neuer Folgenummer y
 - 3. Erstes Datenpaket mit Bestätigung y

6. Nennen Sie eigene Unterschiede zwischen UDP und IP.

UDP = User Datagram Protocol	TCP = Transmission Control Protocol
Datagramm-Dienst	Gewährleistet eine zuverlässige Datenübertragung
Unzuverlässig	Fehlerfreier Datenstrom von einem Rechner zum andern
Verbindungslos	Verbindungsorientiert
Für einmalige, schnelle Übertragungen	Flusskontrolle zur Geschwindigkeitsanpassung

7. Aus welchen Feldern besteht ein UDP Header?

- 8. Wie heisst der <u>UNIX</u>-Prozess, der alle TCP-Verbindungen behandelt? <u>inetd – Internet-Dämon (UNIX only!)</u>
- 9. Unterstützt TCP auch Broadcast-Meldungen? Nein. Keine Unterstützung für Multicast und Broadcast.
- 10. Unterstützt TCP die Übertragung von sporadischen Signalen, z.B. Steuerkomandos? *Grundsätzlich ja, ist aber eher ungeeignet.*
- 11. Mit wie vielen Bits ist bei TCP der Port des Senders angegeben? *16 Bits*

IS_NW33_KF.docx Seite 2 von 2 http://hslu.ximit.ch